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ABSTRACT: The second reference state of the open XXZ spin chain with non-diagonal
boundary terms is studied. The associated Bethe states exactly yield the second set of
eigenvalues proposed recently by functional Bethe Ansatz. In the quasi-classical limit, two
sets of Bethe states give the complete eigenstates of the associated Gaudin model.

KEYWORDS: Bethe Ansatz, Lattice Integrable Modeld.

© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep042007044 / jhep042007044 . pdf


mailto:wenli@maths.uq.edu.au
mailto:yzz@maths.uq.edu.au
http://jhep.sissa.it/stdsearch

Contents

. Introduction

=

=~

2. The inhomogeneous spin-% XXZ open chain
Bl Vertex-face correspondence
Second reference state and associated Bethe states

Results for the Gaudin model

&

Conclusions

O 3 &N &8 ™

=

1. Introduction

The open XXZ quantum spin chain has played a fundamental role in the study of quan-
tum integrable systems with various boundary interactions, which appeared in statistical
mechanics, condensed matter and quantum field theory. Although the special case of diag-
onal boundary terms was solved long ago [[] [}, Bethe Ansatz solutions for non-diagonal
boundary terms where the boundary parameters obey some constraints have been pro-
posed only recently by various approaches [ll-f]. It is found that in order to obtain the
complete spectrum of the model two sets of Bethe Ansatz equations and consequently two
sets of eigenvalues are needed [[[0, ], in contrast with the diagonal boundary case [§. This
suggests that in the framework of algebraic Bethe Ansatz there should exist two reference
states (or pseudo-vacuum states) corresponding to the two sets of Bethe Ansatz equations
and eigenvalues. However, to our knowledge only one reference has been constructed so
far [F, f]. Moreover, the explicit expressions of the complete reference states and asso-
ciated Bethe states are of great importance for investigating correlation functions of the
model [[L1].

In this letter we study the second reference state of the open XXZ spin chain with
non-diagonal boundary terms and construct the complete eigenstates of the model in the
framework of algebraic Bethe Ansatz. In the quasi-classical limit, they give the complete

eigenstates of the associated Gaudin model.



2. The inhomogeneous spin—% XXZ open chain

Throughout, V denotes a two-dimensional linear space and o, o* are the usual Pauli
matrices which realize the spin—% representation of the Lie algebra si(2) on V. The Spin—%
XXZ chain can be constructed from the well-known six-vertex model R-matrix R(u) €

End(V ®@ V) [ given by

1
- b(u) ¢(u)
R(u) = . 2.1
(u) () b(u) (2.1)
1
The coefficient functions read: b(u) = Sins(i;lin), c(u) = % Here we assume 7) being

a generic complex number. The R-matrix satisfies the quantum Yang-Baxter equation

(QYBE),
Ria(ur — uz)Rig(u1 — ug)Raz(ug — u3) = Ros(ua — ug)Riz(ur — uz)Ria(ur —ug), (2.2)

and the unitarity, crossing-unitarity and quasi-classical properties [§]. We adopt the stan-
dard notations: for any matrix A € End(V) , A; is an embedding operator in the tensor
space V ® V ® ---, which acts as A on the j-th space and as identity on the other factor
spaces; R;j(u) is an embedding operator of R-matrix in the tensor space, which acts as
identity on the factor spaces except for the i-th and j-th ones.

One introduces the “row-to-row” monodromy matrix 7'(u), which is an 2 x 2 matrix
with elements being operators acting on V&V, where N = 2M (M being a positive integer),

To(u) Zﬁol(u—i-Z1)R02(u+22)---}_%0N(U+ZN). (2.3)

Here {zj|j = 1,...,N} are arbitrary free complex parameters which are usually called
inhomogeneous parameters.

Integrable open chain can be constructed as follows [fJ]. Let us introduce a pair of
K-matrices K~ (u) and K+ (u). The former satisfies the reflection equation (RE)

Ria(ur —ug) Ky (u1)Ro1(ug +u2) Ky (ug) =
K;(UQ)Rlz(ul +UQ)K;(U1)§21(U1—UQ), (24)

and the latter satisfies the dual RE

ng(UQ - ul)Kf(ul)Rgl(—ul —Uu — 277)[(;(11,2) =
K;(UQ)Elg(—ul — Uz — QU)Kfr(ul)Egl (UQ - ul). (25)
For open spin-chains, instead of the standard “row-to-row” monodromy matrix 7'(u) (R-3),

one needs to introduce the “double-row” monodromy matrix T(u) = T'(u) K~ (u)T ! (—u).
Then the double-row transfer matriz is given by

7(u) = tr(K*(u)T(u)). (2.6)



The QYBE and (dual) REs lead to that the transfer matrices with different spectral pa-
rameters commute with each other [B]: [r(u),7(v)] = 0. This ensures the integrability of
the inhomogeneous spin—% XXZ chain with open boundary.

In this paper, we will consider a generic K-matrix K~ (u) which is a generic solution
to the RE (R.4)) associated the six-vertex model R-matrix [[[3, [[J]

_ ki(uw) k()
K (u)y=1{ 1} 2 = K(u). (2.7)
(k%(u) K ()
The coeflicient functions are
~ 2c08(A1 — Ag) — cos(Ap + Ag + 28)e” 2

ki (u) =
) = it e wsinOg + e+ u)
W) isinu)e O
2 2sin( A + € +u)sin(dg + € +u)’
.. 2 i()\1+>\2) —iu
K () isin(2u)e e

- 2sin(A\; + &+ u)sin(A\y + & +u)’
2cos(A] — Ag)e™ 2% — cos(A + Ag + 2€)
k3 (u) = : 2.8
2(u) 4sin(A; + & +u)sin(Ag + € + u) (28)

At the same time, we introduce the corresponding dual K-matrix KT (u) which is a generic
solution to the dual reflection equation (R.§) with a particular choice of the free boundary
parameters with respect to K~ (u):

K 1(u) K o(u)
K = | 2 2 | (2.9)
(k*?(u) k5 (w)
The matrix elements are
~2cos(A — Ag)e™ " — cos(Ay + Ag + 26t

ki (u) = ) - |
1(w) 4sin(\ + & —u—n)sin(Ag + & —u—n)
]C+1( ) ZSID(2U + 2’[7)6_i()\1+>\2)6iu—i77
u) = - _ ,
2 2sin(A; + & —u—n)sin(Ay + € —u —1n)
2 —isin(2u + 2n)e!(M1HA2) giutin
K () (2u +2n)

- 2sin(A; + & —u—n)sin(A\g +&—u—n)’
k:+2(u) _ 2cos(A\1 — Agl€2iu+i" —cos(A\ + %\2 + 28)e
2 4sin(\ + € —u—n)sin(A+E—u—mn)

(2.10)

The K-matrices depend on four free boundary parameters {\1, Ao, &, £} which obey the
constrain conditions in [{, fl, f]. It is very convenient to introduce a vector A = 22:1 Ak€k
associated with the boundary parameters {\;}, where {¢;, i = 1,2} form the orthonormal
basis of V' such that (e;,€;) = d;5.

3. Vertex-face correspondence

Let us briefly review the face-type R-matrix associated with the six-vertex model. Set

~

i1=¢€¢ —¢€ €= % Zi:l €, for ¢ = 1,2. For a generic m € V, define

m; = (m,€&), mi; =m; —mj = (m,e —¢€;), 4,5 =12 (3.1)



Let R(u,m) € End(V ® V) be the R-matrix of the six-vertex SOS model, which is trigono-
metric limit of the eight-vertex SOS model [[l4] given by
2 2
R(u, m):Z R (u, m)Eii®E¢@'—|—Z {Rzg(u, m)E¢i®Ejj+Rg;(u, m)Eji®El-j} , (3.2)
i=1 ]

where E;; is the matrix with elements (Ew)f,g = 0j10;. The coefficient functions are

ij _ sinusin(mg; — 1)

Ri] (ua )‘) sm(u n n) sm(mw) i 7& ]a (33)
ji ~ sinp sin(u + my;) o

R;;(u,m) = i # J, (3.4)

sin(u + n) sin(m;;)’
and m;; is defined in (B.I]). The R-matrix satisfies the dynamical (modified) quantum
Yang-Baxter equation (or star-triangle equation) [[[4].

Define the following functions: #()(u) = e~™, 6 (u) = 1. Let us introduce two

) labelled by 1, 2. The k-th

intertwiners which are 2-component column vectors ¢, mfnj‘( )

-(u) is given by

element of ¢, m—nj

6" (u) = %) (u + 2my). (3.5)

m7m_nj

e*l’(u+2m1) e*l’(u+2m2)
¢m,mfni (U) = 1 ’ ¢m,mf17§(u) = 1 . (36)

Obviously, the two intertwiner vectors ¢
meV.

Using the intertwiner vectors, one can derive the following face-vertex correspondence
relation [f]

Explicitly,

m.m—n; (W) are linearly independent for a generic

RlQ(ul - u2)¢m,m ni(ul) ® P ni,m— n(i—i—j) (U’Q) =
ZR Uy — u2,m zj ¢m nl m— n(l+k;) (ul) ® ¢m Jm— nl(uz) (37)

Then the QYBE (R.3) of the vertex-type R-matrix R(u) is equivalent to the dynamical
Yang-Baxter equation of the SOS R-matrix R(u,m). For a generic m, we can introduce
other types of intertwiners ¢, ¢ satisfying the conditions,

2
“(k k
Z ¢£nv)m_77ﬂ(u) (bgn,)m—nv = 5‘“” Z ¢m+nu m mzi—nu m( ) - 5#”' (38)

k=1
One may verify that the K-matrices K*(u) given by (R.7) and (R.9) can be expressed in
terms of the intertwiners and diagonal matrices K(\|u) and K(\|u) as follows

t—z¢ WK QIEY (), (3.9)

Wi = Z% A-ngl JKOAw); ¢A 1), A—nj(W)- (3.10)



Here the two diagonal matrices K(Au) and K(A|u) are given by

K(AMu) = Diag (k(A|u)1, k(Au)2)
_ Dia sin(A +& —u) sin(A2 + & —u)
= Diag (sin()\l + &4 u) sin(Ag +£—|—u)>
K(Alu) = Diag (E(Au)1, k(Au):2)

_ Dia sin(A12—n) sin(A1+€ +u+n)  sin(Ajo+n) sin(Ag+E+u+n)
N &\ s Aasin(A\ +&—u—mn) " sinAjpsin(Ag +&—u—n)

(3.11)

) . (3.12)

Although the K-matrices K*(u) given by (R.7) and (R.9) are generally non-diagonal (in
the vertex form), after the face-vertex transformations (B.9) and (B.1{), the face type
counterparts KC(A|u) and K(A|u) simultaneously become diagonal. This fact enables us
to apply the generalized algebraic Bethe ansatz method developed in [[§] for SOS type
integrable models to diagonalize the transfer matrices 7(u) (R.6).

The decomposition of K*(u) (B.10) and the diagonal property (B.13) lead to the re-
casting of the transfer matrix 7(u) (B.6) in the following face type form

7(u) = tr(K T (u)T(u) =Y KAuw)bT (A, Zk Aw) T(Au)lt. (3.13)

2l

Here we have introduced the face-type double-row monodromy matrix 7 (m|u)
m|u Zgbm n(a—70) m—m}(u) T(u)zQSSL)’m,nﬂ(_u) (314)

This face-type double-row monodromy matrix can be expressed in terms of the face type
R-matrix R(m|u) (B.9) and K-matrix K(Au) (B.11) (for the details, see equation (4.19)

of [L3)).

As in [f], let us introduce operators:

7 (m|u); 7 (m|u)]

A(mlu) =AY (mlu) =T (mu)j, B(ml|u) =

C(mlu) = (3.15)

sin(mqz)’ sin(may)’

Sin(m12 + 77)

D(m|u) =DM (mlu) = sin(my2)

{T(m|u)§—R(2u, m+ niﬁ;A(U(mm)} . (3.16)

We remark that the transfer matrix 7(u) (B.6) can be expressed in terms of the operators
AWM and DM, Tt was found in [f] that one can construct a reference state, denoted by

Q).

Q) = DA (N1 A= Nni (721) @ Oy (v_aymia—(v—1yni (T22) - @ Dy i (—2N),
(3.17)

in the sense that the state is common eigenstate of the operators AN and DM and is
annihilated by C (c.f. (J.6)). The associated Bethe states can be constructed by applying
the “creation operator” B on the corresponding reference state

1, .. o) = B = 201 |v)) B — 4nl|vg) - - - B(A — 2Mnijoan)|QP (V). (3.18)



If the parameters {vy} satisfy the following Bethe Ansatz equations,

sin(Ag + & + vg)sin(Ag + € — vg) sin(A; + € + vg) sin(A; + € — v,)
sin(Ag+&+va+1) sin()\g—i—f—va—n) sin( A +&+va+n) sin(A+E—va—1)

H sin va + v, + 2n) sin(ve — v + 1)
sin(vg + vg) sin(ve — v — 1)

2M
H sin(vy + 2x) sin(ve — 2x) a=1 M (3.19)

(Vo + 2 + 1) sin(va — 2z + 1)’
the Bethe state |v1, ..., vp7)") becomes the eigenstate of the transfer matrix with eigenvalue
AW (u) given by [{

sin(Ag + & — u)sin(A; + & + u) sin(\; + & — u) sin(2u + 2n)
sin(Ag + & —u —n)sin(A; + & —u — n) sin(A\; + € + u) sin(2u + n)

AD () = (3.20)

" ﬁ sin(u + vg) sin(u — vy, — )
- sin(u + v + 1) sin(u — vg)
sin(Ag + & +u+ 1) sin(A; + & +u+n)sin(Ay + € — u —n) sin 2u
sin(Ag + & —u —n)sin(A; + & + u) sin(Ag + & + u) sin(2u + n)

" ﬁ sin(u + v + 2n) sin(u — v, +n) iy[ sin(u + z) sin(u — z)
sin(u + v + 1) sin(u — vg) sin(u+ 2z +n)sin(u — 2 + 1)

4. Second reference state and associated Bethe states
Let us introduce the second reference state |Q (),
QD) = Sa_ (v 1ypr-wmp(—21) @ Dy (y_aman-(v_nma(—72) - @ by 5 _pa(—2n), (41)

and the associated operators A and D) which are linear combinations of {7 (m|u)i},

sin(ma; + 1)
sin(may)

DO (mlu) = T (m|u)3. (4.3)

A®) (mlu) = {(T(mlw)} - REu,m +n2)33DP (mlw)},  (4.2)

Using the technique developed in [[IJ], after tedious calculations, we find that the state

Q@) (\)) given by (E]) is exactly the reference state in the following sense,

sin2usin(Ae + £+ u+n)sin(A; +§ —u—1n)
sin(2u + 1) sin(A2 + € + w) sin(A\; + &€ + u)

N
" sin(u + z) sin(u — z) @)
{kl;[l sin(u + 2z + n) sin(u — 2 + 1) } A,
sin(Ag2 + & — u)
sin(Ag + & + u)
B(A — Nn2u)|Q®@ (X)) = 0, (4.6)
C(A — Nn2|u)| Q@ (N)) # 0.

AP\ = Np2|u)| 2P (A)) = (4.4)

DO\ - Np2|u)| 2P (\)) = 22 ), (4.5)



Then the second set of Bethe states can be constructed by applying the “creation operator”

C on the reference state [ () (c.f. (B19))
o1, oan)® = C(A = 202[v1)C(A — 4n2Jvg) - - C(A = 2M2Juan) QP (V). (4.8)

One may check that the transfer matrix 7(u) (R.6) is a linear combination of the operators
A®) and D)
sin(A; + & +u+n)
T(u) = = -
sin(A\; +&§ —u—mn)
sin(A; + & — u)sin(Ag + € + ) sin(2u + 27)
sin(A; + & —u —n)sin(A + & —u — n) sin(2u + n)

AP (AJu)

DA (Au). (4.9)

Carrying out the generalized Bethe Ansatz [, [[7], we finally find that if the parameters
{vy} satisfy the second Bethe Ansatz equations (comparing with the first ones (B.19)),

sin(A1 + & +vg)sin( A + € — vg) sin(Ag + € + v4) sin(Ag + € — v,)
sin( A +E+va+n) sin( A +E—va—1) sin(Aa+E+va+n) sin(Ag+E—va—n)

B 1]\—/[[ sin(vg + v + 27) sin(vy, — vk + 1)
N ok sin(vg + vg) sin(ve — v — 1)

el sin(vy + 2x) sin(ve — 2x)
<[] = o TERIP e R w=1,...,M,  (4.10)
-4 sin(va + 2 + 1) sin(va — 2 + 1)
the Bethe states |v1, ..., va)?) yield the second set of the eigenstates of the transfer matrix

with the eigenvalues,

sin(2u + 2n) sin(A; + & — u) sin(Agy + &€ 4+ u) sin(Ag + € — u)

@ (y) =
AP (u) = sin(2u +n)sin(A1 + & —u — n)sin(Ag + € —u — n)sin(A\2 + £ + u)

(4.11)

" ﬁ sin(u + vg) sin(u — v — )

Pt sin(u + vk + 1) sin(u — vg)

sin(2u) sin(A; + & +u + 1) sin(Ag + € +u +n)sin(A; + & —u — 1)
sin(2u + 1) sin(A; + & —u — ) sin(Ag + € + u) sin(A; + € + u)

a sin(u + v + 2n) sin(u — vg + n) il sin(u + z) sin(u — z)
% H H sin(

sin(u + v + 1) sin(u — vg) u+zp +n)sin(u— 2z +n)

Note that the normalizations adopted in this paper for the R- and K-matrices are different
from those used in [[]. After rescaling an overall factor sin(\; + & — u — n)sin(Ay + € —
u — n)sin(A1 + & + u)sin(A2 + € + u) Hszl sin(u 4+ zx + n)sin(u — 2z + 1) and setting
all inhomogenecous parameters z; = 0, our two eigenvalues {A® (u)} recover those in [J.
Therefore two sets Bethe states {|vy,...,vy)?} BI]) and (f§) together constitute the
complete eigenstates of the transfer matrix 7(u) (.6).

5. Results for the Gaudin model

In order to study the associated Gaudin model, we need further restrict £ = ¢ [f]. Follow-
ing [[16, [[7] one can introduce the corresponding Gaudin operators { H ;} by expanding the



double-row transfer matrix 7(u) (R.6) at the point u = z; around = 0:

. . 0 )
7(z;) =id +nH; + 0(772)7 with H; = a—nT(Zj)’n:07 j=1,...,N, (5.1)
where
(2 —1—2 a+a + 04,05 + + cos(zj —zk)%_1
) sin(z; — zx) k k 2
k#j
2M
K:1(z) oiof —1
+ - -+ k
—l—% m {aj o), +0; 0y +cos(z; + Zk)]T} Ki(z), (5.2)
where 5
with

KJ( —757”0 {K RQJ(2U)R0J( )}

The commutativity of the transfer matrices {7(z;)} for a generic n implies [H;, Hy] = 0,
for 4,5 =1,...,N. Thus the Gaudin system defined by (f.2) is integrable. Moreover the
relation (p.1)) between {H;} and {7(z;)} enable us to extract the eigenstates of the Gaudin
operators and the corresponding eigenvalues from the results obtained in last section.

Let us introduce states |Q) (X)),

. Z'(Z172)\i) Z'(ZN72>\7J)
’Q(z)()\»:(e . )@...@(e 1 )7 1 =1,2. (5.3)

These states can be obtained from the reference states |Q(®)()\)) by taking the limit:
QO (X)) = lim,, o |2 (N)). Let us introduce a matrix C(u) € End(V) associated with the
intertwiner vector ¢ (B.5)

C 6—i(u+2>\1) e—i(u+2)\2) A
= D.
(w) e, (5.4
and the corresponding gauged Pauli operator & (u) € End(V): 0% (u) = C(u)o=C(u)~ .

Then we can construct states WO (zq, ..., zp):
(M + & —zo)sin(zq — 21 + Ai12)
v (... sin(h 5.5
(e 13 (Z{ v + &+ ) (e — 78) (55)

B sin(Ay + & — o) sin(zq + 2 — A12) | _ B )
sin(Ag + € + x4) sin(zq + 21) }Jk ( Zk)) |V (M),

oM, . :
Z {sm()\g + & —xq)sin(xg — 2k — A12) (5.6)

sin(Aa + € + xo) sin(zq — 21)

B sin(A; + & — zo) sin(za + 21 + A12) | 4 )
sin(A1 + & + x4 ) sin(xq + 2;) } o (= Zk)) |2 (N)).



Noting the relations (p.1]) and using the same method as in [f], we find that if the
parameters {zj} satisfy the following Bethe Ansatz equations

2 2M
> 1 3 1
st sin(Aj +& — xo) sin(Aj + €+ zq) P sin(xq, + 2x) sin(zqy — 2x)
< 1
-9 : : Ca=1,..., M, 5.7
l;{ sin(xq, + xp) sin(z, — xg) (5.7)
the two sets of states W) (z1,...,xp) constitute the entire eigenstates of the Gaudin
operators
HyOD(zy, .. epy) = B0 (2, xyy), i=1,2. (5.8)
The functions Ej is
2 M sin 2z,
E; = cot 2z; t(\; + & — J 5.9
j = co z]+;co(]+§ 2 +;Smxk_zj Jsin(zr + 7)) (5.9)

6. Conclusions

We have studied the second reference state of the open XXZ spin chain with non-diagonal
boundary term, which leads to the second set of Bethe state ([.§). These Bethe states give
rise to the corresponding Bethe Ansatz equations ({.10) and eigenvalues (f.11) proposed
in [Id, P] by the functional Bethe Ansatz method. In the quasi-classical limit, two sets of
Bethe states (5.) and (5.G) constitute the complete eigenstates of the associated Gaudin
model.

Very recently, an exact solution of the eigenvalue of the transfer matrix of open XXZ
spin chain for arbitrary boundary parameters was proposed by functional Bethe Ansatz [[L§
and by representation of q-Onsager algebra [I]. It would be interesting to rederive their
results in the framework of algebraic Bethe Ansatz. Moreover, such structure of multiply
reference states found here also appears in open spin chains associated with higher rank

algebras [R(].
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